A noninvasive device that enables doctors to quickly and accurately identify cancerous tissue in a person’s mouth could result in more effective diagnosis and treatment of the disease, says a biomedical engineer at Texas A&M University who is developing the instrument.
The potentially life-saving tool makes use of technology known as “fluorescence lifetime imaging (FLIM)” to measure and visualize the biochemical changes that occur in oral epithelial tissue as it turns cancerous, says Javier Jo, associate professor in the university’s Department of Biomedical Engineering. Measuring these specific changes, the technology, Jo says, can assist physicians in differentiating precancerous, cancerous and benign lesions in patient’s mouth.
The research, which is supported by the National Institutes of Health (NIH), was presented at this year’s World Molecular Imaging Congress, a venue where scientists and clinicians discuss cutting-edge advances in molecular imaging.
“This clinical tool could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence, which happens in 30 percent of patients who survive a first incidence,” Jo says.
With the number of oral cancer cases reportedly on the rise in recent years, Jo’s advance in oral cancer detection technology couldn’t come at a better time. NIH estimates more than 8,000 people in the United States will die from the disease and another 37,000 new patients will be diagnosed this year alone.
Early detection, Jo notes, is key. When oral cancer is diagnosed before it spreads, the five-year survival rate is about 80 percent, but only about 30 percent of patients are diagnosed at this early stage, he says. That’s partially due to the fact that diagnosing oral cancer is not always easy.
Doctors typically rely on the naked eye to look for problematic areas in a patient’s mouth that warrant a biopsy, but identifying these areas can be difficult because a patient’s mouth can manifest lesions that may be both benign and precancerous/cancerous. These different types of lesions are indistinguishable to the naked eye, and even some imaging tools experience difficulty distinguishing between them, resulting in false positives and triggering unnecessary and painful biopsies, Jo says. Furthermore, tissue from a biopsy may register as benign, but the surrounding tissue that was not biopsied can be cancerous and remain undiagnosed. In short, diagnosing oral cancer is somewhat of an educated guessing game that Jo is hoping to improve upon through the use of optical imaging technology.
Jo’s device, which is essentially a small, handheld microscope, employs the FLIM technique to noninvasively evaluate tissue for the structural and molecular changes that serve as key indicators in determining if tissue is precancerous or cancerous. With the tool, Jo can observe distinct fluorescence signatures – fingerprints of a sort – that are specific to benign, precancerous and cancerous tissue.
Continue reading on Engineering Today.
Article courtesy of Texas A&M Today